Ajustar la Educación en Ingeniería a la Industria 4.0: Una visión desde el desarrollo curricular y el laboratorio
Resumen
Actualmente la industria está experimentando una transformación hacia los procesos de fabricación inteligente y digitalización completa, surgiendo nuevas tecnologías de información y comunicación como los sistemas cibernéticos, ciberseguridad, internet de las cosas, Big Data, sistema de integración, computación en la nube, fabricación digital e inteligente, entre otros, conceptos que son impulsores de la llamada Cuarta Revolución Industrial, lo que comúnmente se conoce como Industria 4.0. Una parte importante de las tareas en la preparación para la Industria 4.0 es el ajuste de la educación superior a los requisitos de esta visión, en particular, la educación en ingeniería. El objetivo de esta investigación es presentar una propuesta para el docente de ingeniería, que consta de cómo se debería ajustar la educación en ingeniería hacia la industria 4.0 desde el (1) currículo, relacionando los programas de estudios de la universidad en estudio con los cursos existentes y contenidos de Industria 4.0, adecuando así, los componentes necesarios e identificando las brechas para la creación de nuevos módulos; y desde el (2) laboratorio, mediante la teoría de aprendizaje experiencial de Kolb y la implementación de metodologías de enseñanza-aprendizaje, dando como resultado una mejora en el entorno de aprendizaje y en las prácticas que maximizan las habilidades de los alumnos al aprender a través de su propia experiencia. Siendo finalmente esta investigación, un primer paso hacia una visión más tangible de la educación en ingeniería ajustada a la Industria 4.0.
Doi: 10.21703/rexe.20201940garces7
Texto completo:
PDFReferencias
Abele, E., Metternich, J., Tisch, M., Chryssolouris, G., Sihn, W., ElMaraghy, Hummel, V., y Ranz, F. (2015). Learning factories for research, education, and training. Procedia CIRP, 32, 1-6.
Ahola, J. M., Koskinen, J., Seppälä, T., y Heikkilä, T. (2015). Development of impedance control for human/robot interactive handling of heavy parts and loads. ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (pp. V009T07A066-V009T07A066). American Society of Mechanical Engineers. DOI: 10.1115/DETC2015-47045.
Anjarichert, L. P., Gross, K., Schuster, K., y Jeschke, S. (2016). Learning 4.0: Virtual Immersive Engineering Education. En Digital Universities. Roma, Italia: Gangemi Editore.
Baehr, I. A. (2004). La educación Técnico profesional y la empresa. REXE-Revista de Estudios y Experiencias en Educación, 3(5), 13-28.
Baena, F., Guarin, A., Mora, J., Sauza, J., y Retat, S. (2017). Learning factory: The path to industry 4.0. Procedia Manufacturing, 9, 73-80. DOI: 10.1016/j.promfg.2017.04.022
Bajaj, R., y Sharma, V. (2018). Smart Education with artificial intelligence based determination of learning styles. Procedia Computer Science, 132, 834-842. DOI: 10.1016/j.procs.2018.05.095.
Berger, R. (2014). Industry 4.0 – The new industrial revolution. Munich, Alemania: Roland Berger.
Bhedasgaonkar, R. C., Chavan, M. S., Kubade, P. R., y Patil, S. B. (2019). Course Level PBL: An Excellent Teaching Method for Increasing Skill Levels and Learning Motivation in First Year of Engineering Students. Journal of Engineering Education Transformations, 33(1), 101-106. DOI: 10.16920/jeet/2019/v33i1/149023.
Bremgartner, V., de Magalhães Netto, J. F., y de Menezes, C. S. (2015). Adaptation resources in virtual learning environments under constructivist approach: A systematic review. 2015 IEEE Frontiers in Education Conference (FIE) (pp. 1-8). El Paso, TX: IEEE. DOI: 10.1109/FIE.2015.7344316.
Buhler, D., Kuchlin, W., Grubler, G., y Nusser, G. (2000). The Virtual Automation Lab-Web based teaching of automation engineering concepts. Proceedings Seventh IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS 2000) (pp. 156-164). IEEE. DOI: 10.1109/ECBS.2000.839873.
Cabrera, F. C. (2016). Construcción curricular de aula en docencia universitaria una investigación en evaluación curricular. REXE-Revista de Estudios y Experiencias en Educación, 2(4), 45-56.
Carrasco, C., Meza, J., Loyer, S., Morales, J., y García, F. (2016). Las Tecnologías de Información como apoyo al proceso de enseñanza y aprendizaje. Una experiencia en pedagogía universitaria. REXE-Revista de Estudios y Experiencias en Educación, 2(3), 135-147.
Cleary, M., y Vickers, A. (2014). Management Skills in the future manufacturing sector. En Precision Consultancy for the Department of Education and Early Childhood Development, Melbourne, Australia.
Coşkun, S., Kayıkcı, Y., y Gençay, E. (2019). Adapting Engineering Education to Industry 4.0 Vision. Technologies, 7(1), 10. DOI: 10.3390/technologies7010010.
Crawley, E., Malmqvist, J., Ostlund, S., Brodeur, D., y Edstrom, K. (2007). Rethinking engineering education. The CDIO Approach, 302, 60-62.
Dopico, M., Gomez, A., De la Fuente, D., García, N., Rosillo, R., y Puche, J. (2016). A vision of industry 4.0 from an artificial intelligence point of view. Proceedings on the International Conference on Artificial Intelligence (ICAI) (p. 407-413). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp).
Eder, A. (2015). Akzeptanz von Bildungstechnologien in der gewerblich-technischen Berufsbildung vor dem Hintergrund von Industrie 4.0. Journal of Technical Education (JOTED), 3(2), 19-44.
Erol, S., Jäger, A., Hold, P., Ott, K., y Sihn, W. (2016). Tangible Industry 4.0: a scenario-based approach to learning for the future of production. Procedia CIRP, 54, 13-18.
Faller, C., y Feldmüller, D. (2015). Industry 4.0 learning factory for regional SMEs. Procedia CIRP, 32, 88-91.
Feisel, L. D., y Rosa, A. J. (2005). The role of the laboratory in undergraduate engineering education. Journal of Engineering Education, 94(1), 121-130. DOI: 10.1002/j.2168-9830.2005.tb00833.x.
Felder, R. M., y Brent, R. (2003). Designing and teaching courses to satisfy the ABET engineering criteria. Journal of Engineering Education, 92(1), 7-25. DOI: 10.1002/j.2168-9830.2003.tb00734.x.
Felder, R. M., y Silverman, L. K. (1988). Learning and teaching styles in engineering education. Engineering Education, 78(7), 674-681.
Fleming, N. D. (2001). Teaching and learning styles: VARK strategies. Hershey, PA: IGI global.
Flórez, R. (1994). Hacia una pedagogía del conocimiento. Santa Fé, Bogotá: McGraw-Hill.
Fonseca, C. G. (2018). Conceptualizaciones sobre las clases universitarias en una Facultad de Educación ¿La clase como estructura y dominio técnico?. REXE-Revista de Estudios y Experiencias en Educación, 17(33), 171-182. DOI: 10.21703/rexe.20181733cgarrido2.
Forcael, E., Garcés, G., Bastías, E., y Friz, M. (2019). Theory of teaching techniques used in civil engineering programs. Journal of Professional Issues in Engineering Education and Practice, 145(2), 02518008-1—02518008-7. Doi: 10.1061/(ASCE)EI.1943-5541.0000401.
Forcael, E., Garcés, G., Erazo, P. B., y Bastías, L. (2018). How do we teach?: a practical guide for engineering educators. International Journal of Engineering Education, 34(5), 1451-1466. Recuperado de https://www.ijee.ie/contents/c340518.html.
Expert Group on Future Skills Needs (EGFSN) (2013). Future Skills Requirements of the Manufacturing Sector to 2020. Dublin, Ireland: EGFSN. Recuperado de http://hdl.voced.edu.au/10707/263467.
Gao, R., Wang, L., Teti, R., Dornfeld, D., Kumara, S., Mori, M., y Helu, M. (2015). Cloud-enabled prognosis for manufacturing. CIRP annals, 64(2), 749-772. DOI: 10.1016/j.cirp.2015.05.011.
Garcés, G., y Forcael, E. (2020). Proposal for a relationship between educational paradigms and engineering teaching-learning techniques. Revista Educación en Ingeniería, 15(29), 104-113. Recuperado de https://educacioneningenieria.org/index.php/edi/article/view/1072/977.
Gehrke, L., Kühn, A. T., Rule, D., Moore, P., Bellmann, C., Siemes, S., y Standley, M. (2015). A discussion of qualifications and skills in the factory of the future: A German and American perspective. VDI/ASME Industry, 4, 1-28.
Gordón, F. D. (2017). El currículo basado en competencias profesionales integradas en la universidad ecuatoriana. REXE-Revista de Estudios y Experiencias en Educación, 16(31), 129-154.
Götting, M., Gosewehr, F., Müller, M., Wermann, J., Zarte, M., Colombo, A. W., y Wings, E. (2017). Methodology and case study for investigating curricula of study programs in regard to teaching industry 4.0. 2017 IEEE 15th International Conference on Industrial Informatics (INDIN) (pp. 533-538). Emden, Alemania: IEEE. DOI: 10.1109/INDIN.2017.8104828.
Gulati, R., y Soni, T. (2015). Digitization: A strategic key to business. Journal of Advances in Business Management, 1(2), 60-67.
Guo, Q. (2015). Learning in a Mixed Reality System in the Context of Industrie 4.0. Journal of Technical Education (JOTED), 3(2).
Heywood, J. (2005). Engineering education: Research and development in curriculum and instruction. Hoboken, New Jersey: John Wiley and Sons.
Jaeger, M., y Adair, D. (2018). Impact of PBL on engineering students’ motivation in the GCC region: Case study. In 2018 Advances in Science and Engineering Technology International Conferences (ASET) (pp. 1-7). Dubai, United Arab Emirates: IEEE.
Kagermann, H. (2015). Change through digitization—Value creation in the age of Industry 4.0. In Management of Permanent Change (pp. 23-45). Springer Gabler, Wiesbaden.
Kagermann, H., Helbig, J., Hellinger, A., y Wahlster, W. (2013). Recommendations for implementing the strategic initiative INDUSTRIE 4.0: Securing the future of German manufacturing industry; final report of the Industrie 4.0 Working Group. Deutschland, Alemania, Forschungsunion Wirtschaft – Wissenschaft. Recuperado de https://www.din.de/blob/76902/e8cac883f42bf28536e7e8165993f1fd/recommendations-for-implementing-industry-4-0-data.pdf.
Keys, B., y Wolfe, J. (1990). The role of management games and simulations in education and research. Journal of Management, 16(2), 307-336. DOI: 10.1177/014920639001600205.
Kirby, A. (1992). Games for Trainers. Aldershot, UK: Gower.
Klumpp, M., Clausen, U., y Ten Hompel, M. (2013). Logistics research and the logistics world of 2050. En Efficiency and Logistics(pp. 1-6). Berlin, Heidelberg: Springer.
Kolb, D. A. (1984). Experience as the source of learning and development. Upper Sadle River, USA: Prentice Hall.
Konak, A., Clark, T. K., y Nasereddin, M. (2014). Using Kolb’s Experiential Learning Cycle to improve student learning in virtual computer laboratories. Computers & Education, 72, 11-22. DOI: 10.1016/j.compedu.2013.10.013.
Lang, J. D., Cruse, S., McVey, F. D., y McMasters, J. (1999). Industry expectations of new engineers: A survey to assist curriculum designers. Journal of Engineering Education, 88(1), 43-51. DOI: 10.1002/j.2168-9830.1999.tb00410.x.
Lanza, G., Haefner, B., y Kraemer, A. (2015). Optimization of selective assembly and adaptive manufacturing by means of cyber-physical system based matching. CIRP Annals, 64(1), 399-402. DOI: 10.1016/j.cirp.2015.04.123.
Le, T. Q., y Do, T. T. A. (2019). Active teaching techniques for engineering students to ensure the learning outcomes of training programs by CDIO Approach. International Journal on Advanced Science, Engineering and Information Technology, 9(1), 266-273.
Leonard, D.C. (2002). Learning Theories, A to Z. Westport, CT: Greenwood Press.
Litzinger, T., Lattuca, L. R., Hadgraft, R., y Newstetter, W. (2011). Engineering education and the development of expertise. Journal of Engineering Education, 100(1), 123-150. DOI: 10.1002/j.2168-9830.2011.tb00006.x.
Long, L. N., Blanchette, S., Kelley, T. D., y Hohnka, M. (2019). The Crucial Need to Modernize Engineering Education. 2019 IEEE Aerospace Conference (pp. 1-9). Big Sky, MT: IEEE. DOI: 10.1109/AERO.2019.8741981.
Lucena, J., y Schneider, J. (2008). Engineers, development, and engineering education: From national to sustainable community development. European Journal of Engineering Education, 33(3), 247-257. DOI: 10.1080/03043790802088368.
Luo, X., y Störmer, M. (2018). Chancen und Herausforderungen der Organisations-und Personalentwicklung im Zeitalter der Industrie 4.0–Bestandsaufnahme und Ausblick. In Kommunikation und Technik (pp. 191-209). Springer VS, Wiesbaden.
Maguire, K. (2016). Lean and IT—Working Together? An Exploratory Study of the Potential Conflicts Between Lean Thinking and the Use of Information Technology in Organisations Today. En A. Chiarini, P. Found, N. Rich (eds.), Understanding the Lean Enterprise(pp. 31-60). Springer, Cham.
Male, S. A., Bush, M. B., y Chapman, E. S. (2010). Perceptions of competency deficiencies in engineering graduates. Australasian Journal of Engineering Education, 16(1), 55-68. DOI: 10.1080/22054952.2010.11464039.
Marzano, R. J., Pickering, D., y Pollock, J. E. (2001). Classroom instruction that works: Research-based strategies for increasing student achievement. Alexandria, EE.UU: Association for Supervision and Curriculum Development (ASCD).
Mayer, R. E., Heiser, J., y Lonn, S. (2001). Cognitive constraints on multimedia learning: When presenting more material results in less understanding. Journal of Educational Psychology, 93(1), 187.
Molderez, I., y Fonseca, E. (2018). The efficacy of real-world experiences and service learning for fostering competences for sustainable development in higher education. Journal of Cleaner Production, 172, 4397-4410. DOI: 10.1016/j.jclepro.2017.04.062.
Monostori, L. (2014). Cyber-physical production systems: Roots, expectations and R&D challenges. Procedia CIRP, 17, 9-13.
Paravizo, E., Chaim, O. C., Braatz, D., Muschard, B., y Rozenfeld, H. (2018). Exploring gamification to support manufacturing education on industry 4.0 as an enabler for innovation and sustainability. Procedia Manufacturing, 21, 438-445.
Peña, C. (2019). Redes de Negocios. Editorial Académica Española. Recuperado de https://www.eae-publishing.com/catalog/details/store/ru/book/978-620-2-15255-6/redes-de-negocios?search=redes%20de%20negocios.
Peña, C., Vidal, M., Garcés, G., y Silva S. (2020). Circular Business Model: The Case of the Tire Recycling Plant in the Bío-Bío Chilean Region. En V. Ratten, M. Ramirez-Pasillas, H. Lundberg (Eds.), Managing Sustainable Innovation (pp. 104-120). London, UK: Routledge. Recuperado de https://www.routledge.com/Managing-Sustainable-Innovation/Ratten-Ramirez-Pasillas-Lundberg/p/book/9780367210311.
Phase, I. I. (2005). Educating the engineer of 2020: Adapting engineering education to the new century. Washington, USA: National Academies Press.
Posada, J., Toro, C., Barandiaran, I., Oyarzun, D., Stricker, D., de Amicis, R., y Vallarino, I. (2015). Visual computing as a key enabling technology for industrie 4.0 and industrial internet. IEEE Computer Graphics and Applications, 35(2), 26-40. DOI: 10.1109/MCG.2015.45.
Potkonjak, V., Gardner, M., Callaghan, V., Mattila, P., Guetl, C., Petrović, V. M., y Jovanović, K. (2016). Virtual laboratories for education in science, technology, and engineering: A review. Computers & Education, 95, 309-327. DOI: 10.1016/j.compedu.2016.02.002.
Prince, M. J., y Felder, R. M. (2006). Inductive teaching and learning methods: Definitions, comparisons, and research bases. Journal of Engineering Education, 95(2), 123-138. DOI: 10.1002/j.2168-9830.2006.tb00884.x.
Prinz, C., Morlock, F., Freith, S., Kreggenfeld, N., Kreimeier, D., y Kuhlenkötter, B. (2016). Learning factory modules for smart factories in industrie 4.0. Procedia CIRP, 54, 113-118.
Rugarcia, A., Felder, R. M., Woods, D. R., y Stice, J. E. (2000). The future of engineering education I. A vision for a new century. Chemical Engineering Education, 34(1), 16-25.
Sackey, S. M., y Bester, A. (2016). Industrial engineering curriculum in Industry 4.0 in a South African context. South African Journal of Industrial Engineering, 27(4), 101-114. DOI: 10.7166/27-4-1579.
Salah, B., Abidi, M. H., Mian, S. H., Krid, M., Alkhalefah, H., y Abdo, A. (2019). Virtual Reality-Based Engineering Education to Enhance Manufacturing Sustainability in Industry 4.0. Sustainability, 11(5), 1477. DOI: 10.3390/su11051477.
Schar, M. (2015). Scenario Based Learning-Designing Education Lab. Scenario Based Learning-Designing Education Lab.
Schuh, G., Potente, T., Varandani, R., y Schmitz, T. (2014). Global Footprint Design based on genetic algorithms–An “Industry 4.0” perspective. CIRP Annals, 63(1), 433-436.
Sloat, K. C., Tharp, R. G., y Gallimore, R. (1977). The incremental effectiveness of classroom-based teacher-training techniques. Behavior Therapy, 8(5), 810-818. DOI: 10.1016/S0005-7894(77)80152-4.
Ganschar, O., Gerlach, S., Hämmerle, M., Krause, T., y Schlund, S. (2013). Produktionsarbeit der Zukunft-Industrie 4.0 (Vol. 150). En D. Spath (Ed.). Stuttgart, Alemania: Fraunhofer Verlag.
Sun, Z., Xie, K., y Anderman, L. H. (2018). The role of self-regulated learning in students’ success in flipped undergraduate math courses. The Internet and Higher Education, 36, 41-53. DOI: 10.1016/j.iheduc.2017.09.003.
Turns, J., Atman, C. J., Adams, R. S., y Barker, T. (2005). Research on Engineering Student Knowing: Trends and Opportunities. Journal of Engineering Education, 94(1), 27-40. DOI: 10.1002/j.2168-9830.2005.tb00827.x.
UNESCO (2010). Engineering: Issues, Challenges and Opportunities for Development. Recuperado de http://unesdoc.unesco.org/images/0018/001897/189753e.pdf.
Wanjogu, E. (2016). Potential relevance of neuroscience to guide consumption of multimedia technologies towards enhancing learning (Tesis Doctoral), University of Cape Town, Ciudad del Cabo, Sudáfrica.
Wee, D., Kelly, R., Cattel, J., y Breunig, M. (2015). Industry 4.0-how to navigate digitization of the manufacturing sector, McKinsey & Company, Nueva York, Estados Unidos, Vol. 58, 1-62. Recuperado de http://www.forschungsnetzwerk.at/downloadpub/mck_industry_40_report.pdf.
Zarte, M., y Pechmann, A. (2017). Concept for introducing the vision of industry 4.0 in a simulation game for non-IT students. 2017 IEEE 15th International Conference on Industrial Informatics (INDIN) (pp. 512-517). Emden, Alemania: IEEE. DOI: 10.1109/INDIN.2017.8104825.
Enlaces refback
- No hay ningún enlace refback.
Revista REXE, ISSN 0718-5162 Versión en línea